## Муниципальное общеобразовательное бюджетное учреждение лицей № 1 с. Большеустьикинское муниципального района Мечетлинский район Республики Башкортостан

| Принято на заседании   | Утверждаю: директор           |
|------------------------|-------------------------------|
| педагогического совета | Бабушкина Н.Г.                |
| от 28 мая 2021 г.      | Приказ № 204 от 02.06.2021 г. |
| Протокол № 10.         |                               |

# ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА «На просторах физики» НАПРАВЛЕННОСТЬ: ЕСТЕСТВЕННОНАУЧНАЯ

Уровень: базовый

Возраст обучающихся: 15-18 лет Срок реализации: 2 года

Автор-составитель: ФИО, Учитель физики: Галиев А. К.

## С. Большая Ока, 2021 год

## СОДЕРЖАНИЕ

| 1. | Пояснительная записка                                    | 3    |
|----|----------------------------------------------------------|------|
| 2. | Учебный (тематический) план 1-й год                      | . 8  |
| 3. | Содержание учебного (тематического) плана 1-й год        | 9    |
| 4. | Учебный (тематический) план 2-й год                      | . 19 |
| 5. | Содержание учебного (тематического) плана 2-й год        | . 20 |
| 6. | Организационно-педагогические условия реализации програм | ІМЫ  |
|    |                                                          | 30   |
| 7. | Список литературы                                        | 32   |

#### Пояснительная записка

Физика, как наука о наиболее общих законах природы, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Являясь основой научнотехнического прогресса, физика показывает гуманистическую сущность научных знаний, подчеркивает их нравственную ценность, формирует творческие способности учащихся. Гуманитарное значение физики состоит в том, что она вооружает обучающегося научным методом познания, позволяющим получать объективные знания об окружающем мире.

Данная программа разработана на основе программ:

- «Программы элективных курсов. Физика. 9-11 классы. Профильное обучение», составитель: В.А. Коровин, «Дрофа», 2007 г. И авторской программы: В. А. Орлов, Ю.А. Сауров «Методы решения физических задач», М.: Дрофа, 2008 г. «Избранные вопросы физики» (разработчик М.А. Строкова, педагог дополнительного образования ГБОУ Школа № 46 Москва, 2016г.);
- Федерального закона "Об образовании в Российской Федерации" от 29.12.2012 N 273-ФЗ;
- приказа Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования» (в редакции приказа Минобрнауки России от 31 декабря 2015 г. № 1577);
- приказа Министерства образования и науки Российской Федерации от 17 мая 2012 г. № 413 «Об утверждении федерального государственного образовательного стандарта среднего общего образования» с изменениями, утверждёнными приказами Министерства образования и науки Российской Федерации №1645 от 29.12.2014 г., № 1578 от 31.12.2015 г., № 613 от 29.06.2017 г.
- концепции духовно-нравственного развития и воспитания личности гражданина.
- СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях»: постановления Главного государственного санитарного врача Российской Федерации от 29 декабря 2010 № 189.

#### Направленность программы

Программа «На просторах физики» (далее Программа) имеет естественнонаучную направленность, в связи с этим рассматриваются три актуальных аспекта изучения:

- теоретический: содержание программы рассматривается как средство овладения конкретными физическими знаниями и умениями, необходимыми для применения в практической деятельности и для изучения смежных дисциплин;
- прикладной: содержание программы рассматривается как средство познания окружающего мира, с помощью которого осуществляется научнотехнический прогресс и развитие многих смежных дисциплин;
- общеобразовательный: содержание программы рассматривается как средство развития основных познавательных процессов, умения анализировать, выявлять сущности и отношения, разрабатывать планы действий и делать логические выводы, опираясь на такие дисциплины, как математика, физика, химия.

#### Актуальность программы

Актуальность программы обусловлена тем, что в настоящее время в обществе повышен интерес к естественным наукам. Многие аспекты

овременной жизни - научно-технический прогресс, автоматизация производства, освоение космического пространства и т.д., немыслимы без успехов в области физики. Физика - это основа технических наук. Знания по физике являются начальной базой для изучения специальных профессиональных дисциплин.

Физика является мощным орудием развития интеллектуальных и творческих способностей обучающихся, формирует у них представление об окружающем материальном мире, показывает гуманистическую сущность научных знаний, подчеркивает их нравственную ценность, знакомит с физическими основами современного производства и техники.

**Педагогическая целесообразность Программы** состоит в том, что в процессе её реализации, обучающиеся овладевают теоретическими знаниями основных понятий и законов физики, умениями решать физические задачи разного уровня сложности, навыками проведения физических экспериментов и анализа их результатов.

#### Новизна Программы

Программой предусмотрены новые методики преподавания, в том числе - гибридное обучение; обучение с использованием компьютерных технологий, нововведений в математической части курса, учитывающие требования, предъявляемые отдельными разделами физики, олимпиадами школьников и конкурсами различных уровней.

В Программе предусмотрено значительное увеличение активных форм работы, направленных не только на вовлечение обучающихся в научно-исследовательскую деятельность и обеспечение понимания ими физических

основ окружающего мира, но и на приобретение навыков и умений самостоятельно искать новую информацию и различные пути решения физических задач разного уровня сложности.

Данная Программа использует систему взаимосвязанных занятий, выстроенных в логической последовательности и направленных на активизацию познавательной сферы обучающихся посредством применения разнообразных педагогических технологий и форм работы, интегрирующих разные виды деятельности.

При реализации Программы используется технология крупноблочной подачи информации и погружения в предмет с последующей самостоятельной проработкой основных вопросов физики путём выполнения контрольных работ, тестов, ответов на вопросы.

**Цель программы:** приобретение знаний по физике с использованием различных источников информации и современных информационных технологий, развитие интеллектуальных и творческих способностей обучающихся, воспитание личности, готовой к решению задач, которые ставит научнотехнический прогресс.

#### Задачи Программы:

#### Обучающие:

овладение методами и формирование умений решать физические и экспериментальные задачи, в том числе и повышенного уровня сложности на основе глубоких знаний математики и физических закономерностей;

расширение и углубление представлений о возможностях физического мировоззрения при описании явлений и процессов окружающего мира;

формирование умений представлять информацию в виде таблиц, графиков, схем, используя при этом компьютерные программы и средства сети Интернет;

формирование навыков публичного выступления.

#### Развивающие:

Формирование физического и математического мышления, направленного на анализ и описание природных процессов и явлений;

развитие способностей самостоятельно приобретать и применять знания, умения и навыки;

развитие способностей эффективной работы в условиях ограничений (время, отводимое на решение задач олимпиады, ресурсы лаборатории при выполнении эксперимента);

развитие умений эффективного использования физических законов в учебной и повседневной деятельности;

формирование способностей выдвигать и доказывать гипотезы экспериментальным путем, разрабатывать стратегию решения задач, прогнозировать результаты своей деятельности, анализировать и находить способы решения задачи путем детализации созданной рациональные математической и физической модели;

формирование навыка рефлексивной деятельности за счёт системной работы по поиску и устранению ошибок в решении задач, в том числе повышенного уровня сложности, а также по расчету погрешностей поставленного эксперимента.

#### Воспитательные:

формирование способности к самоанализу и критическому

мышлению;

воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

воспитание убежденности в возможности познания законов природы и использования достижений физики на благо развития человеческой цивилизации; процессе необходимости сотрудничества В совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к моральноэтической использования научных достижений, чувства ответственности за защиту окружающей среды;

развитие интереса к научно-исследовательской деятельности.

Отличительные особенности данной программы

Реализация Программы предполагает подготовку обучающихся к участию в олимпиадах и конкурсах различных уровней.

Большая часть времени отводится на решение задач, в том числе высокого и повышенного уровня сложности.

Программой предусмотрено проведение лабораторного практикума по всем разделам физики.

Программа включает раздел «Математика в физических процессах» как инструмента для решения физических и экспериментальных задач на различных этапах изучения физики.

Возрастная категория обучающихся по программе от 15 до 18 лет.

Программа предназначена для обучающихся, проявляющих повышенный интерес к физике, демонстрирующих повышенные академические способности в области физики и математики.

**Срок реализации** программы составляет 2 года (144 часа в год). Общее количество часов по Программе составляет 288 часов.

#### Формы и режим занятий

Формы организации деятельности обучающихся: индивидуальная, групповая, фронтальная.

На занятиях применяется дифференцированный, индивидуальный подход к каждому обучающемуся. Наполняемость группы до 15 человек.

Занятия проводятся 2 раза в неделю по 2 часа (2 раза по 40 минут с перерывом 10 минут).

#### Методы обучения

По способу организации занятий - словесные, наглядные, практические.

По уровню деятельности обучающихся - объяснительно-иллюстративные, репродуктивные, частично-поисковые, исследовательские.

**Типы занятий:** комбинированные, теоретические, практические, лабораторные, репетиционные, контрольные.

Ожидаемые результаты и способы определения их результативности

Основным результатом обучения является достижение высокой компетентности обучающихся в области физики и математики, необходимой для продолжения образования в технических вузах.

Образовательные результаты обучения по Программе приведены в разделе «Содержание программы».

Рубрика «Знать/понимать» включает требования к учебному материалу, который усваивается и воспроизводится обучающимися. Обучающиеся должны понимать смысл изучаемых понятий, принципов и закономерностей.

Рубрика «Уметь» включает требования, основанные на более сложных видах деятельности, в том числе творческой: создавать объекты, оперировать ими, оценивать числовые параметры процессов, приводить примеры практического использования полученных знаний, осуществлять самостоятельный поиск учебной информации.

В результате реализации Программы в части реализации развивающих задач, обучающиеся

будут уметь:

- анализировать и описывать природные процессы и явления;
- самостоятельно приобретать и применять специальные знания;
- работать в условиях ограничений (время, ресурсы);
- выдвигать и доказывать гипотезы экспериментальным путём, разрабатывать стратегию решения задач, прогнозировать результаты своей деятельности, анализировать и находить рациональные способы решения задачи путем детализации, созданной математической и физической модели.

Способы определения результативности

Педагогическое наблюдение, педагогический анализ результатов решения задач, результаты участия в конкурсах различных уровней.

Виды контроля: входной, промежуточный, итоговый.

Формы подведения итогов реализации Программы

В ходе реализации Программы проводится промежуточная аттестация в форме тестов. По окончании обучения проводится итоговая аттестация в виде контрольной работы.

СОДЕРЖАНИЕ ПРОГРАММЫ Учебный (тематический) план. 1-й год обучения

| No॒                | Наименование                | Наименование Количество часов |        |            |                      |
|--------------------|-----------------------------|-------------------------------|--------|------------|----------------------|
| $\Pi/\Pi$          | раздела, темы               | Всего                         | Теория | Практи ка  | аттестации/          |
|                    |                             |                               |        |            | контроля             |
|                    |                             |                               |        |            |                      |
| Ввод               | цное занятие                | 2                             | 2      |            |                      |
| Door               | ar 1 Marayarana r           | 36                            | 8      | 28         |                      |
|                    | ел 1. Математика в          | 30                            | O      | 20         |                      |
| физи<br>1.1.       | ических процессах           | 8                             | 2      | 6          | 140117790 HI III IV  |
| 1.1.               | Векторы и действия          | O                             | 2      | 0          | контрольный          |
| 1.2.               | Над ними                    | 8                             | 2      | 6          | тест                 |
| 1.2.               | Квадратичная                | O                             | 2      |            | контрольный          |
| 1.3.               | функция Решение систем      | 12                            | 2      | 10         | тест                 |
| 1.5.               |                             | 12                            | 2      | 10         | контрольный          |
|                    | алгебраических<br>уравнений |                               |        |            | тест                 |
| 1.4.               | Тригонометрия               | 8                             | 2      | 6          | 140117790 HI III III |
| 1. 1.              | Тригопометрия               | O                             | 2      |            | контрольный          |
| Раздел 2. Механика |                             | 48                            | 10     | 38         | тест                 |
| Гизд               | esi 2. iviexaiima           | 10                            | 10     | 30         | контрольный          |
| 2.1.               | Кинематика                  | 16                            | 4      | 12         | тест<br>контрольный  |
| 2.1.               | Timonarina                  | 10                            | •      | 12         | тест                 |
| 2.2.               | Динамика                    | 20                            | 4      | 16         | контрольный          |
| 2.2.               | Amama                       | 20                            | •      |            | тест                 |
| 2.3.               | Законы сохранения           | 12                            | 2      | 10         | контрольный          |
| 2.5.               |                             | 12                            | _      |            | тест                 |
| Разп               | ел 3. Молекулярная          | 26                            | 6      | 20         | 1001                 |
| физика             |                             |                               | J      |            |                      |
| 3.1.               | Молекулярно -               | 16                            | 4      | 12         | контрольный          |
|                    | кинетическая теория         | - 0                           | •      | _ <b>_</b> | тест                 |
| 3.2.               | Термодинамика               | 10                            | 2      | 8          |                      |
| · · · ·            |                             | 10                            | -      |            | контрольный          |
|                    |                             |                               |        |            | тест                 |

| Раздел 4.               | 30  | 8  | 22  |             |
|-------------------------|-----|----|-----|-------------|
| Электродинамика         |     |    |     |             |
| 4.1. Электрическое поле | 14  | 4  | 10  | контрольный |
|                         |     |    |     | тест        |
| 4.2. Законы постоянного | 16  | 4  | 12  | контрольный |
| тока                    |     |    |     | тест        |
| Итоговое занятие        | 2   |    | 2   | контрольная |
|                         |     |    |     | работа      |
| Всего                   | 144 | 34 | 110 |             |
|                         |     |    |     |             |

Содержание учебного (тематического) плана.

#### 1-й год обучения

#### Введение

Введение в программу. Инструктаж по технике безопасности.

#### Раздел 1. Математика в физических процессах

Уровень предъявления материала обеспечивает учащимся возможность строить математические модели физических процессов, а также получать необходимые значения и зависимости физических величин, посредством решения различных уравнений, неравенств и анализа графиков.

#### Обучающиеся будут знать:

- основные свойства векторов и действия над ними;
- основные типы функциональных зависимостей, графиков функций и способов преобразования графиков;
- способы нахождения корней квадратного уравнения, решения квадратных неравенств, теорему Виета;
  - основные методы решения систем алгебраических уравнений;
- основные соотношения в треугольнике и тригонометрические тождества, формулы приведения и значения тригонометрических функций для различных углов.

#### Обучающиеся будут уметь:

- изображать векторы на чертеже, находить их геометрическую сумму графически и аналитически;
- проецировать вектор на заданное направление, находить величину проекции вектора;
  - определять угол между двумя произвольными векторами;
- решать системы алгебраических уравнений методом Гаусса и методом Крамера;

- читать и строить графики линейной, квадратичной, обратно пропорциональной зависимостей, логарифмической и показательной функций, тригонометрических функций;
- находить вершину параболы и ее корни, точки пересечения с графиком линейной зависимости;
- находить стороны и углы в прямоугольном и произвольном треугольнике, применяя теорему Пифагора и теорему косинусов.

#### Формы занятий, используемые при изучении данного раздела:

- лекционная;
- практикум по решению задач;
- лабораторная работа;
- индивидуальная работа;
- групповая работа;
- индивидуальная консультация;
- групповая консультация;
- контрольный тест.

#### Тема 1.1. Векторы и действия над ними

*Теория*. Понятие вектора, изображение вектора. Действия над векторами. Длина и проекция вектора. Скалярное произведение векторов и его свойства. Угол между векторами. Применение скалярного произведения векторов к решению физических задач.

*Практика*. Решение задач на нахождение суммы, разности, произведения векторов. Нахождение скалярного произведения векторов и угла между векторами. Решение физических задач, содержащих векторные величины.

#### Тема 1.2. Квадратичная функция

Теория. Понятие функции, свойства функции. Квадратичная функция, ее свойства и график. Построение графика квадратичной функции при помощи элементарных преобразований. График квадратичной функции с модулем. Квадратный трехчлен и его корни. Разложение квадратного трехчлена на множители. Квадратное уравнение. Формула корней квадратного уравнения. Зависимость корней от дискриминанта. Формулы Виета. Расположение корней квадратного трехчлена. Квадратное неравенство. Графический метод решения квадратного неравенства. Метод интервалов.

Практика. Исследование свойств квадратичной функции. Построение графиков квадратичной функции. Решение квадратных уравнений и неравенств.

#### Тема 1.3. Решение систем алгебраических уравнений

*Теория*. Алгебраическое уравнение. Область определения уравнения. Метод Гаусса и Крамера. Целые рациональные уравнения. Дробно рациональные уравнения. Системы уравнений. Иррациональные уравнения и их системы. Уравнения с модулем и их системы.

Практика. Решение систем алгебраических уравнений различными методами.

#### Тема 1.4. Тригонометрия

*Теория*. Тригонометрические функции числового аргумента Преобразования тригонометрических выражений. Свойства тригонометрических функций: периодичность, четность, нечетность, непрерывность.

Практика. Решение задач на свойства тригонометрических функций.

#### Раздел 2. Механика

Уровень предъявления материала обеспечивает учащимся умение решать задачи высокого и повышенного уровня сложности и экспериментально проверять основные закономерности механики.

#### Обучающиеся будут знать:

основные понятия механики: материальная точка, относительность механического движения, путь, перемещение, мгновенная скорость, ускорение, масса, инертность, сила (сила тяжести, сила упругости, сила трения), вес, невесомость, импульс, инерциальная и неинерциальная система отсчета, работа силы, потенциальная и кинетическая энергия, амплитуда, период, частота, инерция, момент инерции;

основные законы механики: законы Ньютона, закон всемирного тяготения, закон Гука, закон Кулона - Амонтона, закон сохранения импульса, закон сохранения момента импульса, закон сохранения и превращения энергии;

основные при<u>нци</u>пы механики: при<u>нци</u>п относительности Галилея, принцип независимости движений, принцип соответствия;

возможности применения механики: движение искусственных спутников под действием силы тяжести, баллистическое движение, реактивное движение, устройство ракеты, КПД машин и механизмов, подъемная сила крыла самолета;

основные измерительные приборы и методы вычисления погрешностей измерений в механике;

методы решения олимпиадных задач по механике. Обучающиеся будут уметь:

правильно описывать и объяснять основные механические явления и процессы, давать точные определения основных понятий механики;

изображать на чертеже при решении задач направления векторов скорости, ускорения, силы, импульса тела;

решать задачи на определение скорости, ускорения, пути и перемещения при различных видах движения, скорости и ускорения при движении тела по окружности с постоянной по модулю скоростью, массы, силы, импульса, работы, мощности, энергии, КПД, ускорения свободного падения по периоду колебаний маятника и др.;

рассчитывать тормозной путь, силы, действующие на тело, движущееся с ускорением, определять скорость ракеты, использовать классический закон сложения скоростей, а также законы Ньютона, всемирного тяготения, сохранения импульса, момента импульса, энергии и др.;

читать и строить графики, выражающие зависимость кинематических величин от времени при равномерном, равноускоренном и колебательном движениях, силы упругости при деформации и др.;

измерять и вычислять физические величины: время, расстояние, скорость, ускорение, массу, силу, жесткость, коэффициент трения, импульс, работу, мощность, КПД механизмов, период колебаний маятника, ускорение свободного падения;

делать выводы об изменении физических параметров и хода физического процесса из анализа графиков, уравнений и неравенств;

пользоваться физическими приборами: микрометром, секундомером, измерительным цилиндром, весами, трибометром, подвижным и неподвижным блоком и др.;

решать задачи высокого и повышенного уровня сложности по механике и олимпиадные задачи.

#### Формы занятий, используемые при изучении данного раздела:

- лекционная;
- индивидуальная работа;
- групповая работа;
- индивидуальная консультация;
- групповая консультация;
- итоговый тест.

#### Тема 2.1. Кинематика

Теория. Прямолинейное равномерное и равноускоренное движение. Принцип относительности Галилея. Относительное движение. Теорема сложения скоростей. Движение тела, брошенного под углом к горизонту. Криволинейное движение. Движение материальной точки по окружности с постоянной скоростью. Основные характеристики вращательного движения (центростремительное ускорение, период, частота, угловое перемещение). Колебательное движение материальной точки. Кинематические характеристики колебательного движения, графики изменения этих

параметров с течением времени. Аналогии вращательного и колебательного движений.

Практика. Решение задач на вычисление кинематических параметров при равномерном и равноускоренном движении, а также при движении материальной точки по окружности и колебательном движении. Нахождение средней скорости при неравномерном движении. Вычисление мгновенных значений кинематических параметров колебательного движения. Построение графиков зависимостей кинематических параметров от времени и анализ этих графиков для различных видов движения материальной точки. Вычисление скорости, дальности, высоты подъема и времени полета тела, брошенного под углом к горизонту.

#### Тема 2.2. Динамика

Теория. Основные понятия динамики материальной точки (плотность, масса, сила). Инерциальные и неинерциальные системы отсчета. Законы Ньютона. Прямая и обратная задачи механики. Виды сил (упругости, трения, сопротивления). Закон Всемирного тяготения. Законы Кеплера. Космические скорости. Движение тела по наклонной плоскости. Трение, закон Кулона- Амонтона. Упругость и деформации, закон Гука. Динамика вращательного движения. Основной закон вращательного движения. Момент инерции. Основные понятия статики (момент силы, плечо силы, точка опоры, центр вращения). Виды равновесий тела (устойчивое, неустойчивое, безразличное). Условие равновесия тела, центр масс. Давление (твердые тела, жидкости и газы). Закон Паскаля и закон Архимеда. Условие плавания тел. Динамика колебательного движения материальной точки.

Практика. Нахождение плотности тела и средней плотности смеси (сплава). Решение задач на расчет различно рода сил. Решение прямой и обратной задачи механики для поступательного и вращательного движения. Определение ускорения тела при движении под действием нескольких сил. Построение и анализ графиков зависимостей силы трения, силы тяжести и силы упругости от существенных параметров механической системы. Определение моментов инерции тел различной формы. Вычисление параметров механической системы в условии равновесия. Решение задач гидростатики и определение условий плавания тел.

#### Тема 2.3. Законы сохранения

Замкнутая Теория. Импульс тела. Закон сохранения импульса. система. Реактивное движение. Устройство ракеты. Уравнение Мещерского. Формула Циолковского. Механическая работа. Мощность. Потенциальная и кинетическая энергия. Консервативные И диссипативные силы. Кинетическая энергия вращающегося тела. Закон сохранения энергии в механике. Простые механизмы и их КПД. Превращения энергии. Момент импульса. Закон сохранения момента импульса. Кинетическая энергия вращающегося твердого тела.

*Практика*. Определение импульса тела и замкнутой системы тел. Применение закона сохранения импульса и вычисление кинематических характеристик для

реальных систем и процессов (взрыв, удар, столкновение). Решение задач на закон сохранения полной механической энергии. Вычисление потенциальной энергии тела в поле тяжести и упруго деформированной пружины. Расчет работы, мощности и КПД различных механизмов. Вычисление параметров вращательного движения с применением закона сохранения импульса. Решение комбинированных задач на применение законов сохранения в механике.

#### Раздел 3. Молекулярная физика

Уровень предъявления материала обеспечивает учащимся решать задачи повышенного уровня сложности и экспериментально проверять основные закономерности молекулярной физики.

#### Обучающиеся будут знать:

основные понятия молекулярной физики: тепловое движение частиц; массы и размеры молекул; идеальный газ; изотермический, изохорный, изобарный и адиабатный процессы; броуновское движение; молярная теплоемкость; температура (мера средней кинетической энергии молекул); необратимость тепловых процессов; количество, теплота, внутренняя энергия; насыщенные и ненасыщенные пары; влажность воздуха; анизотропия монокристаллов, кристаллические и аморфные тела; упругие и пластические деформации;

основные законы молекулярной физики: основное уравнение молекулярно-кинетической теории, уравнение Менделеева-Клапейрона, связь между параметрами состояния газа в изопроцессах, первое и второе начало термодинамики, уравнение Майера, уравнение Пуассона;

суть основополагающих опытов молекулярной физики: опытов Штерна, Перрена, Ламерта, Джоуля, Менделеева и Клапейрона, Шарля, Бойля и Мариотта, Гей-Люссака, Карно и др.

возможности применения молекулярной физики: использование кристаллов и других материалов в технике, тепловые двигатели и их применение на транспорте, в энергетике и сельском хозяйстве, методы профилактики и борьбы с загрязнением окружающей среды;

основные измерительные приборы молекулярной физики.

Обучающиеся будут уметь:

правильно описывать и объяснять основные явления и процессы молекулярной физики, давать точные определения основных понятий термодинамики;

изображать на чертеже зависимости основных термодинамических параметров в изопроцессах;

решать задачи на расчет количества вещества, молярной массы с использованием основного уравнения молекулярно-кинетической теории газов, уравнения Менделеева-Клапейрона, средней кинетической энергии хаотического

движения молекул и температуры, поверхностного натяжения жидкости и параметров упругих свойств материалов;

рассчитывать КПД тепловых двигателей, работу газа, внутреннюю энергию и количество теплоты в изопроцессах и адиабатном процессе на основе первого начала термодинамики;

читать и анализировать графики, выражающие связь между термодинамическими параметрами и вычислять работу с помощью графика зависимости давления от объема;

определять экспериментально параметры состояния газа (температуру, объем и давление), модуль упругости материала, коэффициент поверхностного натяжения жидкостей;

пользоваться физическими приборами: психрометром, гигрометром, термометром, мензуркой, манометром;

решать задачи высокого и повышенного уровня сложности по молекулярной физике и олимпиадные задачи.

#### Формы занятий, используемые при изучении данного раздела:

лекционная; индивидуальная работа; групповая работа;

индивидуальная консультация; групповая консультация; контрольная работа;

#### Тема 3.1. Молекулярно-кинетическая теория

Теория. Основные положения молекулярно-кинетической теории и их опытные обоснования. Диффузия и броуновское движение. Взаимодействие атомов и молекул вещества. Масса и размеры молекул. Постоянная Авогадро. Динамические и статистические закономерности. Вероятность события. Микро- и макроописание физических систем. Средние значения физических величин. Распределение как способ задания состояния системы. Распределение Максвелла и Больцмана. Опыт Штерна, Перрена, Ламерта. Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа. Температура и ее измерение. Абсолютный нуль температуры. идеального газа как состояния следствие основного молекулярно-кинетической теории газов и его частные случаи для постоянной температуры, постоянного объема и постоянного давления. Реальные газы. Уравнение Ван-дер-Ваальса. Средняя длина свободного пробега. Агрегатные состояния и фазовые переходы. Насыщенные и ненасыщенные пары. Зависимость давления и плотности насыщенного пара от температуры. Зависимость температуры кипения жидкости от давления. Критическая температура. Фазовые переходы и диаграмма состояния вещества. Процессы конденсации и испарения в природе и технике. Влажность воздуха. Точка росы. Психрометр. Гигрометр. Свойства поверхности Поверхностная Поверхностное жидкостей. энергия. натяжение. Смачивание. Капиллярные явления. Строение кристаллов. Анизотропия кристаллов.

Полиморфизмы. Монокристаллы и поликристаллы. Пространственная решетка. Элементарная ячейка. Симметрия кристаллов. Дефекты в кристаллах. Образование кристаллов в природе и получение их в технике. Способы управления механическими свойствами твердых тел. Понятие о жидких кристаллах. Аморфные тела. Деформации. Напряжение. Механические свойства твердых тел: упругость, прочность, пластичность, хрупкость. Диаграмма растяжения. Создание материалов необходимыми техническими свойствами.

Практика. Расчет микроскопических и макроскопических параметров реальных систем (скорость молекул, температура, давление, количество вещества, число молекул). Решение задач на уравнение Менделеева- Клапейрона и газовые законы. Построение графиков изопроцессов и их анализ. Вычисление параметров жидкостей и твердых тел (модуля Юнга, удлинения деформированного тела, коэффициента поверхностного натяжения, влажности воздуха и др.). Решение качественных и расчетных задач на капиллярные явления и фазовые переходы, анализ фазовых диаграмм.

#### Тема 3.2. Термодинамика

Теория. Термодинамический подход к изучению физических процессов. Термодинамические параметры состояния тела. Внутренняя энергия тела. Первое начало термодинамики. Термодинамическое описание фазовых переходов, анализ фазовых превращений с энергетической точки зрения. Работа идеального газа при изменении объема. Применение первого начала термодинамики к различным тепловым процессам, совершаемых над идеальным газом. Адиабатный процесс. Теплоемкости газов при постоянном давлении и постоянном объеме. Теплоемкость твердых тел. Тепловые машины. Принцип действия тепловых двигателей. Цикл Карно. КПД теплового двигателя и пути его повышения. Двигатель внутреннего сгорания.

Паровая и газовая турбины. Реактивные двигатели. Холодильные машины. Роль тепловых машин в развитии теплоэнергетики и транспорта. Тепловые машины и охрана природы. Обратимые и необратимые процессы. Необратимость тепловых процессов. Второй закон термодинамики и его статистический смысл.

Практика. Расчет термодинамических параметров реальных систем Термодинамический различных состояниях. анализ фазовых превращений. Энергетические испарении (конденсации), соотношения при плавлении (кристаллизации) вещества. Применение первого начала термодинамики к описанию процессов над идеальным газом, расчет параметров газа в этих процессах. Вычисление КПД тепловых машин (в том числе и идеальных), работающих по различным циклам. Качественные задачи на возможность- невозможность создания «вечного двигателя». Расчет эффективности работы холодильных установок.

#### Раздел 4. Электродинамика

Уровень предъявления материала обеспечивает учащимся возможность решать задачи повышенного уровня сложности и экспериментально проверять основные закономерности электричества и магнетизма, а также колебательных и волновых процессов.

#### Обучающиеся будут знать:

основные понятия электричества и магнетизма: электрический заряд, электрическое и магнитное поля, напряженность, разность потенциалов, напряжение, электроемкость, диэлектрическая проницаемость, сторонние силы и ЭДС, магнитная индукция, магнитный поток, магнитная проницаемость, напряженность магнитного поля.

#### Обучающиеся будут уметь:

правильно описывать и объяснять основные явления и процессы электродинамики, давать точные определения основных понятий электромагнетизма.

#### Формы занятий, используемые при изучении данного раздела:

лекционная; индивидуальная работа; групповая работа; индивидуальная консультация; групповая консультация; итоговый тест.

#### Тема 4.1. Электрическое поле

Теория. Закон сохранения электрического заряда. Точечный и распределенный заряды. Закон Кулона. Электрическое поле. Напряженность. Линии напряженности. Электрическое поле точечных зарядов. Однородное электрическое поле. Поток напряженности электрического поля. Теорема Гаусса и ее применение для расчета электрических полей. Работа электрического поля при перемещении зарядов. Потенциал. Напряжение. Связь между напряжением и напряженностью. Проводники в электрическом поле. Электрическая емкость. Электрическая емкость плоского конденсатора. Диэлектрическая проницаемость. Энергия электрического поля. Плотность энергии. Диэлектрики в электрическом поле. Механизм поляризации диэлектриков. Электреты и сегнетоэлектрики. Пьезоэлектрический эффект и его использование в технике.

Практика. Решение качественных задач по электростатике (электризация, проводящие сферы), объяснение наблюдаемых электрических явлений. Расчет силы взаимодействия электрических зарядов, емкости, заряда и энергии конденсатора. Построение графиков зависимостей электрических параметров заряженных тел от координат.

#### Тема 4.2. Законы постоянного тока

Теория. Условия существования постоянного тока. Стационарное электрическое поле. Электрические цепи с последовательным и параллельным соединениями проводников. Электродвижущая сила. Закон Ома для неоднородного участка цепи и для полной цепи. Правила Кирхгофа. Расчет разветвленных электрических цепей, смешанных соединений проводников. Шунты и дополнительные сопротивления. Работа и мощность тока. Закон Джоуля-Ленца.

Электрический ток в металлах. Основные положения электронной теории Скорость упорядоченного движения проводимости металлов. электронов сопротивления от температуры. проводнике. Зависимость Сверхпроводимость. Электрический ток В полупроводниках. Электрическая проводимость полупроводников и ее зависимость от температуры и освещения. Собственная и примесная проводимость полупроводников. Термо- и фоторезисторы.

Электронно-дырочный переход. Полупроводниковый диод. Транзистор. Применение полупроводниковых приборов. Триггер как элемент ЭВМ. Интегральные схемы. Электронная эмиссия. Вольт-амперная характеристика диода. Электронные пучки и их свойства. Электронно-лучевая трубка. Электрический ток в растворах и расплавах электролитов. Закон электролиза. Определение заряда электрона. Применение электролиза в технике. Электрический ток в газах. Несамостоятельный и самостоятельный разряды в газах. Виды самостоятельного разряда (тлеющий, искровой, коронный, дуговой). Понятие о плазме. МГД-генератор. Электрический ток в вакууме. Вакуумный диод и триод. Электронно-лучевая трубка. Опыт Иоффе-Милликена.

Практика. Расчет сопротивления последовательного, параллельного и смешанного соединения проводников. Вычисление падения напряжения, силы тока, выделяемой мощности в цепи постоянного тока. Расчет сложных цепей с помощью правил Кирхгофа. Построение и анализ вольта-амперных характеристик резисторов, растворов и полупроводников.

Итоговое занятие

Контрольная работа.

## Учебный (тематический) план. 2-й год обучения

| No                | Наименование       | Ко.            | Формы |           |             |
|-------------------|--------------------|----------------|-------|-----------|-------------|
| п/п раздела, темы |                    | Всего Теория ј |       | Практи ка | аттестации/ |
|                   |                    |                |       |           | контроля    |
|                   |                    |                |       |           |             |
| Ввод              | цное занятие       | 2              | 2     |           |             |
| Разл              | ел 1. Математика в | 30             | 8     | 22        |             |
|                   | ических процессах  |                |       |           |             |
| 1.4.              | Тригонометрия      | 6              | 2     | 4         | контрольный |
|                   |                    |                |       |           | тест        |
| 1.5.              | Логарифмическая    | 8              | 2     | 6         | контрольный |
|                   | И                  |                |       |           | тест        |
|                   | показательная      |                |       |           |             |
|                   | функции            |                |       |           |             |
| 1.6.              | Производная        | 8              | 2     | 6         | контрольный |
|                   |                    |                |       |           | тест        |
| 1.7.              | Интеграл           | 8              | 2     | 6         | контрольный |
|                   |                    |                |       |           | тест        |
| Разд              | ел 2.              | 52             | 12    | 40        |             |
| Элен              | стродинамика       |                |       |           |             |

| 2.1. | Магнитное поле     | 14  | 4  | 10  | контрольный |
|------|--------------------|-----|----|-----|-------------|
|      |                    |     |    |     | тест        |
| 2.2. | Электромагнитная   | 18  | 4  | 14  | контрольный |
|      | индукция           |     |    |     | тест        |
| 2.3. | Электромагнитные   | 20  | 4  | 16  | контрольный |
|      | колебания и волны. |     |    |     | тест        |
| Разд | ел 3. Оптика и     | 58  | 16 | 42  |             |
| кван | товая физика       |     |    |     |             |
| 3.1. | Волновая оптика    | 14  | 4  | 10  | контрольный |
|      |                    |     |    |     | тест        |
| 3.2. | Геометрическая     | 14  | 4  | 10  | контрольный |
|      | оптика             |     |    |     | тест        |
| 3.3. | Физика атома       | 14  | 4  | 10  | контрольный |
|      |                    |     |    |     | тест        |
| 3.4. | Физика атомного    | 16  | 4  | 12  | контрольный |
|      | ядра               |     |    |     | тест        |
|      | Итоговое занятие   | 2   |    | 2   | контрольная |
|      |                    |     |    |     | работа      |
|      | Всего              | 144 | 38 | 106 |             |
|      |                    | 1   |    |     |             |

Содержание учебного (тематического) плана.

#### 2-й год обучения

**Вводное занятие.** Введение в Программу. Инструктаж по технике безопасности. **Раздел** 1. Математика в физических процессах.

Уровень предъявления материала обеспечивает учащимся строить математические модели физических процессов, а также получать необходимые значения и зависимости физических величин, посредством решения различных уравнений, неравенств и анализа графиков.

#### Обучающиеся будут знать:

- основные соотношения в треугольнике и тригонометрические тождества, формулы приведения и значения тригонометрических функций для различных углов;
  - свойства логарифмической и показательной функции и их графики;
  - методы решения логарифмических и показательных уравнений (неравенств);
  - понятия производной и первообразной;
  - основные формулы дифференцирования и интегрирования.

#### Обучающиеся будут уметь:

- преобразовывать тригонометрические выражения и выражения, содержащие логарифмы;

- решать простейшие тригонометрические, показательные и логарифмические уравнения и неравенства;
- находить производную, а также промежутки знакопостоянства и монотонности различных функций;
  - решать экстремальные задачи методами математического анализа;
- находить первообразную (интеграл) различных элементарных функций и площадь криволинейной трапеции.

#### Формы занятий, используемые при изучении данного раздела:

- лекционная;
- практикум по решению задач;
- лабораторная работа;
- индивидуальная работа;
- групповая работа;
- индивидуальная консультация;
- групповая консультация;
- контрольный тест.

#### Тема 1.4. Тригонометрия

*Теория*. Графики тригонометрических функций. Обратные тригонометрические функции. Тригонометрические уравнения. Виды тригонометрических уравнений, основные методы их решения. Отбор корней. Запись решения. Тригонометрические неравенства.

Практика. Построение графиков тригонометрических функций. Преобразование выражений, содержащих обратные тригонометрические функции. Решение тригонометрических уравнений и неравенств различными методами. Отбор корней тригонометрических уравнений.

#### Тема 1.5. Логарифмическая и показательная функции

Теория. Показательная функция И ее свойства. Логарифмы, свойства логарифмов. Логарифмическая функция И ee свойства. Потенцирование логарифмирование. Различные способы решения показательных и логарифмических уравнений. Уравнения, сводящиеся к показательным и логарифмическим. Системы уравнений. Неравенства, содержащие показательные и логарифмические функции.

Практика. Преобразование выражений, содержащих логарифмы. Решение показательных уравнений неравенств. Нахождение области И определения логарифмических уравнений. Решение логарифмических уравнений и неравенств. рационализации. Использование свойств функций при логарифмических и показательных уравнений и неравенств. Системы показательных и логарифмических уравнений.

#### Тема 1.6. Производная

Теория. Скорость протекания процесса. Мгновенная скорость. Касательная к графику функции. Понятие о предельном переходе. Предел, его свойства, замечательные пределы. Производная. Дифференциал. Непрерывность и дифференцируемость функций. Правила вычисления производных. Производные различных функций. Вторая производная; ее механический смысл. Производные высших порядков. Уравнение касательной к графику функции. Приложение производной к исследованию функций. Исследование функции на монотонность. Достаточное условие экстремума. Наибольшее и наименьшее значения функции на промежутке (конечном и бесконечном). Использование производной в физических задачах.

Практика. Решение задач на нахождение пределов. Нахождение производных простых и сложных функций. Решение задач на исследование функций на монотонность. Решение задач на нахождение экстремумов функций. Нахождение асимптот графиков. Решение задач на нахождение наибольшего и наименьшего значения функции на отрезке, решение задач на оптимизацию.

#### Тема 1.7. Интеграл

Теория. Первообразная и ее свойства Неопределенный интеграл. Правила нахождения первообразных, непосредственное интегрирование, интегрирование по частям, подстановка. Площадь криволинейной трапеции. Определенный интеграл и его свойства Формула Ньютона-Лейбница. Приближенное вычисление определенных интегралов. Приложения интегралов. Вычисление площадей и объемов геометрических фигур. Использование интеграла в физических задачах.

*Практика.* Решение задач на нахождение первообразной. Нахождение интегралов различными методами. Решение задач на вычисление площади криволинейной трапеции, на нахождение объемов геометрических тел. Решение физических задач при помощи интеграла.

#### Раздел 2. Электродинамика

Уровень предъявления материала обеспечивает учащимся решать задачи повышенного уровня сложности и экспериментально проверять основные закономерности электричества и магнетизма, а также колебательных и волновых процессов.

Обучающиеся будут знать:

- колебаний - основные электромагнитных понятия теории И волн: самоиндукция, индуктивность, свободные электромагнитная индукция; колебания; колебательный контур; переменный ток; вынужденные интерференция, дисперсия, дифракция, электромагнитная волна; поляризация электромагнитных волн;
- основные законы электричества и магнетизма: закон Кулона, закон сохранения заряда, закон Ома для неоднородной и полной цепи, правила Кирхгофа, закон Био-Савара-Лапласа;

- основные законы теории электромагнитных колебаний и волн: закон электромагнитной индукции, законы отражения, преломления и поглощения электромагнитных волн, постулаты теории относительности;
- суть основополагающих опытов электродинамики: опытов Франклина, Вольты, Кулона, Ома, Ампера, Фарадея, Герца;
- возможности практического применения явлений и законов электродинамики: электроизмерительные приборы, магнитная запись звука, электронно-лучевая трубка, полупроводниковый диод, терморезистор, транзистор, генератор переменного тока, схема радиотелефонной связи, индукционная сварка, трансформаторы;
- основные измерительные приборы электродинамики: осциллограф, мультиметр, терморезистор;
  - методы решения олимпиадных задач по электродинамике.

Обучающиеся будут уметь:

- правильно описывать и объяснять основные явления и процессы электродинамики, давать точные определения основных понятий электромагнетизма;
- решать задачи на закон сохранения электрического заряда, законы Кулона, Ома, правила Кирхгофа, Ленца, закон электромагнитной индукции; на движение и равновесие заряженных частиц в электрическом и магнитном полях;
- вычислять напряженность, напряжение, силу тока, работу электрического поля, электроемкость, магнитную индукцию, силу Лоренца, силу Ампера, а также параметры колебательного контура и электромагнитной волны;
- изображать и читать электрические цепи, зависимости основных параметров колебательного контура от времени;
  - строить векторные диаграммы электрических колебаний;
- определять экспериментально параметры электрических цепей, проверять их исправность; измерять параметры электрического и магнитного полей; получать на осциллографе картину электрических колебаний и фигуры Лиссажу;
- пользоваться физическими приборами: амперметром, вольтметром, мультиметром, осциллографом, генератором электрических сигналов;
- решать задачи по электричеству, магнетизму, колебаниям повышенного уровня сложности и олимпиадные задачи.

#### Формы занятий, используемые при изучении данного раздела:

- лекционная;
- индивидуальная работа;
- групповая работа;
- индивидуальная консультация;
- групповая консультация;

#### - итоговый тест.

#### Тема 2.1. Магнитное поле

Теория. Магнитное взаимодействие токов. Магнитное поле тока. Магнитная индукция. Линии магнитной индукции. Магнитный поток. Сила Ампера. Принцип действия электроизмерительных приборов. Громкоговоритель. Сила Лоренца. Движение электрических зарядов в электрическом и магнитном полях. Ускорители заряженных частиц. Масс- спектрограф. Магнитные свойства веществ. Электрический двигатель постоянного тока.

*Практика*. Вычисление индукции магнитного поля для различной конфигурации проводников. Расчет силы Ампера и Лоренца, параметров траектории заряженных частиц в магнитном поле. Качественное описание явлений, связанных с магнитным полем в веществе.

#### Тема 2.2. Электромагнитная индукция

Теория. Явление электромагнитной индукции. ЭДС индукции. Индукционное электрическое поле. Закон электромагнитной индукции. Правило Ленца. Вихревое электрическое поле. Электродинамический микрофон. Самоиндукция. Индуктивность. Влияние среды на индуктивность. Энергия магнитного поля. Плотность энергии. Относительность электрического и магнитного полей. Плотность энергии магнитного поля. Электрический генератор постоянного тока.

*Практика.* Решение качественных и расчетных задач по электромагнитной индукции. Вычисление ЭДС самоиндукции, энергии заряженной катушки и магнитного поля.

#### Тема 2.3. Электромагнитные колебания и волны

Теория. Колебательное движение и колебательная система. Свободные колебания в идеальных колебательных системах. Гармонические колебания. Период, фаза гармонических колебаний. Принцип суперпозиции. частота, амплитуда, Графическое представление гармонических колебаний. Сложение гармонических колебаний. Векторные диаграммы. Негармонические колебания. Свободные электромагнитные колебания в контуре. Превращение энергии в колебательном контуре. Собственная частота колебаний в контуре. Затухающие электрические колебания. Аналогия электромагнитных и электрических колебаний. Автоколебания. Генератор незатухающих колебаний (на транзисторе). Вынужденные электрические колебания. Переменный ток. Генератор переменного тока. Действующие значения напряжений и силы тока. Активное, емкостное и индуктивное сопротивления. Закон Ома для электрической цепи переменного тока. Резонанс напряжений и токов. Способы получения негармонических колебаний. Трансформатор.

Электромагнитное поле. Электромагнитные волны и скорость их распространения. Уравнение волны. Отражение, преломление, интерференция, дифракция, поляризация электромагнитных волн. Энергия электромагнитной волны,

объемная плотность энергии волны. Изобретение радио А.С. Поповым. Принцип радиотелефонной связи, модул<u>яци</u>я и детектирование. Простейший радиоприемник. Радиолокация. Телевидение. Развитие средств связи в России.

Постулаты теории относительности Эйнштейна. Основные следствия теории относительности и их экспериментальная проверка. Скорость света в вакууме как предельная скорость передачи сигнала. Импульс, энергия и масса в релятивистской динамике.

Практика. Построение векторных диаграмм электрических колебаний. Расчет параметров цепи переменного тока (емкостного и индуктивного сопротивлений и мощности переменного тока). Решение задач по электромагнитным колебаниям и волнам, расчет коэффициента трансформации. Качественное и численное описание эффектов теории относительности.

#### Раздел 3. Оптика. Квантовая и ядерная физика

Уровень предъявления материала обеспечивает учащимся решать задачи повышенного уровня сложности и экспериментально проверять основные закономерности оптики, атомной физики и физики атомного ядра.

Обучающиеся будут знать:

- основные понятия оптики: свет, линза, зеркало, мнимое и действительное изображение; интерференция, дифракция и поляризация света; дифракционная решетка, зонная пластинка;
- основные понятия квантовой физики: тепловое излучение, абсолютно черное тело, квант, фотон, фотоэффект, стационарное состояние, изотоп, квантование и дискретность, дебройлевская длина волны, ядро, нейтрон, протон, ядерный реактор, счетчик и детектор частиц и др.;
- основные законы оптики: закон отражения и преломления света, уравнение тонкой линзы и сферического зеркала, условие максимумов и минимумов интерференционной и дифракционной картины, закон Бугера- Ламберта-Бера, закон Малюса;
- основные законы квантовой физики: законы Вина и Стефана- Больцмана, законы Столетова и уравнение Эйнштейна для фотоэффекта, постулаты Бора, гипотеза де Бройля, соотношение неопределенностей Гейзенберга, закон радиоактивного распада, правила смещения при радиоактивных излучениях;
- суть основополагающих опытов оптики и квантовой физики: опытов Ньютона, Юнга, Френеля, Резерфорда, Комптона, Столетова, Лебедева и др.;
- возможности практического применения явлений и законов оптики и квантовой физики: очки, просветляющая оптика, телескоп, фотоэлемент, ПЗС-матрица, спектральный анализ, атомная электростанция, лучевая терапия и др.;
- основные измерительные приборы оптики и квантовой физики: поляроид, рефрактометр, спектрограф, дифракционная решетка, фотоэлектронный умножитель, фоторезистор, счетчик Гейгера;

- методы решения олимпиадных задач по оптике и квантовой физике.

Обучающиеся будут уметь:

- правильно описывать и объяснять основные оптические и квантовые явления и процессы, давать точные определения основных понятий оптики и атомной физики;
- решать задачи на законы фотоэффекта, законы волновой и геометрической оптики, закон радиоактивного распада;
- вычислять параметры оптических систем (фокусное расстояние линзы, увеличение изображения, толщины пленок), атомных состояний (радиусы орбиты и скорость электрона, работа выхода электрона) и ядерных реакций (выделяемая теплота);
- строить ход лучей в оптических системах, изображать интерференционные и дифракционные схемы, а также энергетические уровни атома;
- проверять экспериментально закон Малюса, закон преломления и отражения света, закон Бугера-Ламберта-Бера; получать интерференционные и дифракционные картины по различным схемам и определять из них параметры отражающих и пропускающих систем, определять фокусное расстояние линзы; наблюдать атомные спектры;
- пользоваться физическими приборами оптики и квантовой физики: поляроидом, рефрактометром, спектрографом, дифракционной решеткой, фотоэлектронным умножителем, фоторезистором, линзой;
- решать задачи по оптике и атомной физике повышенного уровня сложности и олимпиадные задачи.

#### Формы занятий, используемые при изучении данного раздела:

- лекционная;
- индивидуальная работа;
- групповая работа;
- индивидуальная консультация;
- групповая консультация;
- итоговый тест.

#### Тема 3.1. Волновая оптика

Теория. Электромагнитные излучения разных длин волн - радиоволны. Инфракрасное излучение, видимое излучение, ультрафиолетовое, рентгеновское и гамма-излучение. Свет как электромагнитная волна. Скорость света. Когерентность. Интерференция света. Интерференционные схемы (схема Юнга, зеркало Ллойда, бипризма и бизеркала Френеля). Спектральное разложение при интерференции. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракционная решетка.

Дифракционный спектр. Определение длины световой волны. Понятие о голографии. Поляризация света и ее применение в технике. Дисперсия и поглощение света. Закон Бугера-Лемберта-Бера. Дисперсионный спектр. Спектроскоп.

*Практика*. Изображение, анализ и расчет различных интерференционных и дифракционных схем. Решение задач на законы Бугера-Ламберта-Бера и Малюса. Вычисление изменения длины, частоты, скорости и интенсивности света при прохождении его через вещество.

#### Тема 3.2. Геометрическая оптика

Теория. Геометрическая оптика как предельный случай волновой оптики. Законы геометрической оптики: закон прямолинейного распространения, закон отражения, закон преломления света. Принцип Ферма. Плоское и сферическое зеркала. Полное отражение. Линза. Формула тонкой линзы. Сферическая и хроматическая аберрация. Увеличение линзы.

Глаз как оптическая система. Дефекты зрения. Очки. Фотометрия. Световой поток. Сила света. Освещенность. Закон освещенности. Субъективные и объективные характеристики излучения. Оптические приборы. Фотоаппарат, проекционные аппараты, лупа, микроскоп, зрительные трубы, телескоп. Разрешающая способность оптических приборов.

Практика. Построение хода луча (изображений) при прохождении (отражении) света в различных оптических системах (линзы, прозрачные призмы и пластины, зеркала), определение параметров этих систем. Решение задач на законы отражения и преломления. Вычисление параметров изображения в различных приборах, вооружающих глаз человека (телескоп, лупа, микроскоп). Расчеты фотометрических величин в случае различных источников света и отражающих поверхностей.

#### Тема 3.3. Физика атома

Теория. Возникновение учения о квантах. Законы теплового излучения. Фотоэлектрический эффект и его законы. Уравнение фотоэффекта. Фотон, его энергия и импульс. Эффект Комптона. Опыт Боте. Применение фотоэффекта в технике. Давление света. Опыты Лебедева. Эффект Комптона. Волновые и квантовые свойства света. Опыты и явления, подтверждающие сложность атома. Модель атома Резерфорда. Квантовые постулаты Бора. Модель атома водорода по Бору. Происхождение линейчатых спектров. Спектры излучения и поглощения. Опыты Франка и Герца. Спектр энергетических состояний атомов. Спектральный анализ. Трудности теории Бора. Гипотеза де Бройля. Волновые свойства электрона. Корпускулярно- волновой дуализм. Соотношение неопределенностей Гейзенберга. Понятие о квантовой механике. Соотношение неопределенностей. Атом водорода. Спин электрона, многоэлектронные атомы. Вынужденное излучение. Лазеры и их применение. Понятие о нелинейной оптике.

*Практика*. Вычисление характеристик теплового излучения абсолютно черного тела. Построение энергетических уровней атома и расчет параметров электрона в

атоме. Решение задач на законы фотоэффекта и соотношения неопределенности Гейзенберга, определение волновых и корпускулярных параметров фотона и микрочастиц.

Тема 3.4. Физика атомного ядра

Теория. Состав атомного ядра. Изотопы. Ядерные силы. Энергия связи атомных энергетических состояний атомного ядра. Гаммаядер. излучение. Радиоактивность. Радиоактивные превращения ядер. Альфа-, бета- распад, гаммаизлучение при альфа- и бета-распадах. Нейтрино. Искусственная радиоактивность. Позитрон. Экспериментальные методы регистрации заряженных частиц. Закон радиоактивного распада. Ядерные реакции. Энергетический выход ядерных реакций. Получение Деление ядер урана. Ядерный реактор. Термоядерная реакция. радиоактивных изотопов и их использование. Понятие о дозе излучения и биологической зашите.

Элементарные частицы. Античастицы. Взаимные превращения элементарных частиц. Фундаментальные взаимодействия. Классификация элементарных частиц. Спектры элементарных частиц. Лептоны. Адроны, кварки, глюоны.

*Практика*. Решение задач на правило смещения при радиоактивных излучениях и закон радиоактивного распада. Вычисление энергии, выделяющейся в ядерных реакциях. Составление уравнений термоядерных реакций и определение продуктов этих реакций.

Итоговое занятие

Контрольная работа.

## ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

| Раздел    | Форма   | Приёмы и                                           | Дидактическ      | Техническо         | Форма      |
|-----------|---------|----------------------------------------------------|------------------|--------------------|------------|
|           |         | методы                                             | ий               | e                  |            |
|           | занятия | организации                                        | материал.        | оснащени           | подведения |
|           |         | _                                                  | _                | e                  |            |
|           |         | образовательно                                     | Электронные      |                    | ИТОГОВ     |
|           |         | ΓΟ                                                 |                  |                    |            |
|           |         | процесса                                           | источники        |                    |            |
| Математи  | Комбин  | 1                                                  | 1) Раздаточные   | 1)                 | 1)         |
| ка        | И       | )Информацион                                       |                  | Персональн         | Контрольна |
|           |         | но-                                                |                  |                    |            |
| В         | рованна | рецептивный                                        | материалы        | ый                 | я работа   |
|           | Я       |                                                    |                  | компьютер          |            |
| физически |         | 2)Репродуктивн                                     | 2) Презентации   | 2)                 | 2)         |
| X         |         | ый                                                 |                  | Проекцион          | Контрольн  |
|           |         |                                                    |                  | Н                  |            |
| процессах |         | 3)Проблемное                                       | 3) Сайт          | oe                 |            |
|           |         | наножанна                                          | alexlarin.net    | o Sony Honory      | ый тест    |
|           |         | изложение                                          | alexial III.liet | оборудован<br>ие   | ыи тест    |
|           |         | ^Частично-                                         | 4) Сайт          | 3) Доступ к        |            |
|           |         | частично-                                          | mathus.ru        | <i>э)</i> доступ к |            |
|           |         | поисковый                                          | mamus.tu         | сети               |            |
|           |         | HOHORODDIN                                         |                  | Интернет.          |            |
|           |         | 5)                                                 |                  |                    |            |
|           |         |                                                    |                  | ,                  |            |
|           |         | A C. I WILLIAM I I I I I I I I I I I I I I I I I I |                  | й                  |            |
|           |         |                                                    |                  | почты              |            |
|           |         | 5)<br>Дистанционный                                |                  |                    |            |

| Механика                 | Комбини  | 1                    | 1) Учебно-                  | 1)                            | 1)Контрольн     |
|--------------------------|----------|----------------------|-----------------------------|-------------------------------|-----------------|
|                          |          | )Информационно       | ,                           | Персональн                    | , <u>.</u>      |
|                          |          | -                    |                             | U                             | _               |
|                          | рованная | рецептивный          | методическое                |                               | я работа        |
|                          |          | 2)Репродуктивны      | пособие                     | компьютер<br>2)               | 2)              |
|                          |          | т<br>й               | 110 00 0110                 |                               | Гу<br>Контрольн |
|                          |          |                      |                             | Н                             |                 |
|                          |          | 3)Проблемное         | «Кинематика»,               | oe                            |                 |
|                          |          | изложение            | «Динамика»,                 | оборудован<br>ие              | ый тест         |
|                          |          | ^Частично-           | «Законы                     | 3) Доступ к                   |                 |
|                          |          | поисковый            | сохранения»                 | сети<br>Интернет.             |                 |
|                          |          | 5)                   | 2) Раздаточные              | 4) Наличие                    |                 |
|                          |          | Дистанционный        | материалы<br>3) Презентация | электронно<br>й почты         |                 |
|                          |          |                      | <ul><li>4) Сайт</li></ul>   | <ul><li>5) Демонстр</li></ul> |                 |
|                          |          |                      | mathus.ru                   | ац ионное и                   |                 |
|                          |          |                      |                             | лабораторн                    |                 |
|                          |          |                      |                             | ое<br>оборудован              |                 |
|                          |          |                      |                             | ие                            |                 |
| Молекуляр<br>н ая физика | поранная | /                    | 1) Учебно-                  | 1)                            | 1)              |
| п ил физика              |          | Информационно-       | методическое                | U                             | Контрольна      |
|                          |          | рецептивный          |                             | ый<br>компьютер               | я работа        |
|                          |          | 2)                   | пособие                     | 2)                            | 2)              |
|                          |          | Репродуктивный       |                             | Проекцион                     | · ·             |
|                          |          | 3) Проблемное        | «Молекулярная               | н<br>ое                       |                 |
|                          |          | изложение            | физика»                     | оборудован                    | ый тест         |
|                          |          | 40.77                | a)                          | ие                            |                 |
|                          |          | 4) Частично-         | 2) Раздаточные              | 3) Доступ к                   |                 |
|                          |          | поисковый            | материалы                   | сети                          |                 |
|                          |          | 5                    | a) II                       | Интернет.                     |                 |
|                          |          | 5)<br>Листаниновии й | 3) Презентации              | 4) Наличие                    |                 |
|                          |          | Дистанционный        | 4) Сайт                     | электронно<br>й почты         |                 |
|                          |          |                      | mathus.ru                   | 5) Демонстр                   |                 |
|                          |          |                      |                             | ац ионное и                   |                 |
|                          |          |                      |                             | лабораторно                   |                 |
|                          |          |                      |                             | е<br>оборудован               |                 |
|                          |          |                      |                             | ие                            |                 |
|                          |          |                      |                             | физического                   |                 |
|                          |          |                      | 31                          |                               |                 |

| Ī | Электро-           | Комбини  | 1)                     | 1) Учебно-                | 1) Персо                  | 1)Контроль            |
|---|--------------------|----------|------------------------|---------------------------|---------------------------|-----------------------|
|   | динамика           | рованная | Информационно-         | методическое              | нальный                   | на я работа           |
|   |                    |          | рецептивный            |                           |                           | _                     |
|   |                    |          | 2)                     | пособие                   | компьютер                 | 2)                    |
|   |                    |          | Репродуктивный         | 2                         | 2)                        | Контрольн             |
|   |                    |          | 3) Проблемное          | «Электрическое            | *                         |                       |
|   |                    |          | напоменна              | поле. Законы              | Проекционн                | ый тест               |
|   |                    |          | изложение              | поле. Эаконы              | oe                        | ый тест               |
|   |                    |          | 4) Частично-           | постоянного               | оборудован                |                       |
|   |                    |          | ŕ                      |                           | ие                        |                       |
|   |                    |          | поисковый              | тока»,                    | 3) Доступ к               |                       |
|   |                    |          | 5)                     | «Магнитное                | сети                      |                       |
|   |                    |          | Дистанционный          |                           | Интернет.                 |                       |
|   |                    |          | ,                      |                           | 4) Наличие                |                       |
|   |                    |          |                        | ная индукция»,            | электронной               |                       |
|   |                    |          |                        |                           | почты                     |                       |
|   |                    |          |                        |                           | 5) Демонстр               |                       |
|   |                    |          |                        |                           | ац ионное и               |                       |
|   |                    |          |                        | -                         | лабораторно               |                       |
|   |                    |          |                        | 3) Презентации<br>4) Сайт | е<br>оборудован           |                       |
|   |                    |          |                        | mathus.ru                 | ие                        |                       |
|   |                    |          |                        |                           | физического               |                       |
|   |                    |          |                        |                           | кабинета                  |                       |
|   | Оптика и квантовая | Комбини  |                        | 1) Учебно-                | 1)                        | 1)Контроль            |
|   | физика             |          | информационно-         | методическое              | Персональн                | на я работа           |
|   |                    |          | рецептивный            |                           | ый                        |                       |
|   |                    |          | 7)                     | пособие                   | компьютер<br>2)           | 2)Контроль            |
|   |                    |          | <i>Р</i> епродуктивный |                           | 2)<br>Проекционн          | <i>2)</i> 10111po.118 |
|   |                    |          | 8) Проблемное          | Квантовая                 | oe                        |                       |
|   |                    |          | , · ·                  |                           | a fantura nati            | ый тест               |
|   |                    |          | изложение              | физика»                   | оборудован<br>ие          | ый тест               |
|   |                    |          | 9) Частично-           | 2) Раздаточные            |                           |                       |
|   |                    |          |                        |                           |                           |                       |
|   |                    |          | поисковый.             | материалы                 | сети                      |                       |
|   |                    |          | Листаннистич           | 2) <b>Πηροριμανίστ</b>    | Интерне.<br>4) Наличие    |                       |
|   |                    |          | Дистанционный          | •                         | н) наличие<br>электронной |                       |
|   |                    |          |                        | 4) Сайт                   | почты                     |                       |
|   |                    |          |                        | mathus.ru                 | 5) Демо                   |                       |
|   |                    |          |                        |                           | н                         |                       |
|   |                    |          |                        |                           | страционное               |                       |
|   |                    |          |                        |                           | И                         |                       |
|   |                    |          |                        |                           | лабораторно               |                       |
|   |                    |          |                        |                           | e<br>e                    |                       |
|   |                    |          |                        |                           | оборудован<br>ие          |                       |
|   |                    |          |                        |                           | ие<br>физического         |                       |
|   |                    |          |                        |                           | физического<br>кабинета   |                       |
|   |                    |          |                        |                           |                           |                       |

#### СПИСОК ЛИТЕРАТУРЫ Список

литературы, использованной при написании программы

- 1. Сивухин Д.В. Курс физики в 5-и томах / Д.В. Сивухин М.: «ФИЗМАТЛИТ», 2013.
- 2. Матвеев А.Н. Курс физики в 5-и томах / А.Н. Матвеев М.: «Высшая школа», 2013.
- 3. Трофимова Т.И. Краткий курс физики / Т.И. Трофимова М.: «Высшая школа», 2012.
- 4. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры / Д.В. Беклемишев -М: «ФИЗМАТЛИТ», 2011.
- 5. Пискунов Н.С. Дифференциальное и интегральное исчисления: Учебное пособие в двух томах / Н.С. Пискунов М.: «Наука», 2010.
- 6. Берман Г.Н. Сборник задач по курсу математического анализа: Учебное пособие / Г.Н. Берман М.: «Книга по Требованию», 2012.

Список литературы, рекомендованной обучающимся

- 1. Задачи Московских городских олимпиад по физике. 1986-2005 гг. М.: издательство МЦНМО, 2012.
- 2. 3800 задач по физике для школьников и поступающих в вузы М.: «Дрофа», 2010.

Список литературы, рекомендованной родителям

- 1. Щебланова, Е. И. Неуспешные одаренные школьники / Е. И. Щебланова. М.: БИНОМ. Лаборатория знаний, 2011.
- 2. Ричард Темплар. Правила самоорганизации: Как всё успевать, не напрягаясь / Альпина Паблишер, 2013.
- 3. Зеленина, Е. Б. (кандидат педагогических наук; зам. директора; Краевая школа-интернат для одаренных детей, г. Владивосток). Одаренный ребенок: как его воспитывать и обучать? / Е.Б.Зеленина [Текст] / Народное образование. 2010. № 8. С. 201-206.

Список электронных источников информации

- 1. Сайт Всероссийской олимпиады по физике: [Электронный ресурс] URL: <a href="https://physolymp.rii">https://physolymp.rii</a>. (Дата обращения: 28.08.2018).
- 2. Сайт Всероссийской олимпиады по астрономии: [Электронный ресурс] URL: <a href="https://astroolymp.rii">https://astroolymp.rii</a>. (Дата обращения: 28.08.2018).
- 3. Научно-популярный астрономический сайт: [Электронный ресурс] URL: https://astronet.rii. (Дата обращения: 28.08.2018).
- 4. Открытый банк заданий ЕГЭ: [Электронный ресурс] URL: <a href="https://fipi.rii">https://fipi.rii</a>. (Дата обращения: 28.08.2018).

#### Нормативные документы

- 1. Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273- ФЗ «Об образовании в Российской Федерации».
- 2. Приказ Министерства образования и науки РФ от 29 августа 2013 г. № 1008 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».
- 3. Письмо Минобрнауки России № 09-3242 от 18.11.2015 «О направлении информации» (вместе с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»
- 4. Санитарно-эпидемиологические правила и нормативы СанПиН 2.4.4.3172-14 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей» (утв. постановлением Главного государственного санитарного врача РФ от 4 июля 2014 г. № 41).

### ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

#### СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 603332450510203670830559428146817986133868575829 Владелец Бабушкина Надежда Геннадьевна

Действителен С 20.04.2021 по 20.04.2022